ORIGINAL PAGE 1S N89-16369

Ah!Help: A Generalized On-line Help Facility

Wong Nai Yu?* .
Charmiane Mantggth
Alex Soulahakil

i, Introduction

In modern-day programming it is not sufficient that a large,
commercially available, software package simply work. It must have
certain characteristics that make it marketable. Among these, user
triendliness and portability are of major importance.

In the user friendliness category., a great forward step was
taken with the introduction of on-line help facilities, relieving the
user from continually turning to cumbersome manuals for assistance.
The on-line help facility we have designed is neither unique nor
ievolutionary. It is a simple program which was originally designed
to work in conjunction with a screen generation package. It is, how-
ever, independent of it and is, therefore, portable. The only new
aspect introduced by this package is that it is written in Ada and
utilizes certain Ada facilities, such as binary files and Direct_lo,
which make implementation neater, simpler and more straight-forward
“han languages have heretofore allowed. In addition, the progrem
uses only standard Ada generics, thus adding to its portability.

The concept behind this package is to allow the building of help
files in textual format. The program then builds a binary file,
creating and storing an index for the named file. This index, along
with secondary indices created for further help on specific choices
mnade available to the user, is later used to access the help fiie
associated with the program currently being used by the user. LUpon
exiting the help mode, the user is returned to the point from where
‘he on-line help was requested.

<. Design Considerations

The basic and overall purpose cof this program was to produce a
convenient, easy to use, general purpose on-line help facility.
Convenience and ease of use from the end-user's point of view, {.ow-
»ver, usually means time consuming, difficult programming fur thw
low level designer. It also generally means that there is a lo:s
of generality and/or portability.

In order to combine these seemingly incongruent features we
decided that an implementor/designer should be able to provide an
on-line help menu and associated verbal descriptions in textual
format, via a text file. The program should take over from there
and create the actual manual which the user sees. The text file
method does, however, present certain restrictions. It is highly
formatted, meaning the designer of an on-line help manual must be
familjiar with the rules imposed by the program. We felt this to
be only a minor inconvenience in comparison to the advantages to
be gained by the program.

The main design considerations were that the user should, by
use of a function key, be able to call an on-line help facility
pertinent to whatever mode/program he or she happened to be in.

F.4.6.1

PAYROLL / PERSONELL SYSTEM

SOCIAL SECURITY NUMBER:
LAST NRME:

FIRST NAME:

MIDDLE INITIAL:

STREET ADDRESS:

CITY AND STATE:

ZIP CODE:

— — - — — A= —— - — ———

USER PRESSES F1 FOR HELP

i
| GENERAL COMMANDS => FUNCTION KEY CALLS | |
| GENERAL PANEL DESCRIPTION P
I PANEL ATTRIBUTE DESCRIPTIONS I
e —— - s L - —— Tt — ————— o — —_—n = 5 " ———— ———— i

| USE RETURN TO RETURN TO PANEL i |

I USE ~“U TO MOVE UP, ~D TO MOVE DOWN, I
I RETURN TO SELECT OPTION |

e e s e e e et o e . e 2 b o et |

|
|

|

[

[

I

| e e ACTIVE COMMAND MENU-—=-=~mmmmm e o |
!

|

[

|

|

|

l

- —n - —— — — ———— s G . P Sm et —— W= s . +% e - S - e —— - - — g - o = ——

USER USES ~D TWICE AND SELECTS PANEL ATTRIBUTE
DESCRIPTIONS BY HITTING RETURN

T — - —— — —— —— — —— — — . — - f—— —— T ————— ——— - ———— - —— - ——

DATA DICTIONARY INDEX

SSN LAST NAME FIRST NAME
ADDRESS CITY AND STATE Z2IP CODE

[USE “U TO MOVE UP, ~D TO MOVE DOWN, {
| “L TO MOVE LEFT, ~R TO MOVE RIGHT, |
| RETURN TO SELECT OPTION |

S —— A —————— — ——— -~ — —— —— o - = n — — ————— A — -

USER USES “D, “R TWICE AND SELECTS 'Z2IP CODE'

Figure 1. Typical session from user's point of view

F.4.6.2

Z2IP CODE

ENTER ONLY THE 5 DIGIT ZIP CODE; 9
DIGIT ZIP CODES ARE NOT YET SUPPORTED
EXAMPLE: 77001

| USE RETURN TO ACCESS MAIN MENU I
! |

RETURN GETS USER BACK TO MAIN MENU FROM
WHERE FURTHER HELP MAY BE OBTAINED OR
THE USER MAY EXIT BACK TO THE PROGRAM

Figure 1, continued.

Fl4.6.3

Thus, the program had to be smart enough to know where the call
was issued from, call the appropriate menu/manual, respond to the
user's inputs and then return the user to the point from which the
help call was made. We also decided that, in order to improve the
user friendliness aspect of the program, the user should have little
or no typing to do - i.e., the program should be able to respond to
special purpose function key inputs.

Of course, the use of the help manual itself must be self-
descriptive in order to relieve the user from having to turn to
a manual on the on-line help manual.

Figure 1 shows what a typical session, from the end-users
point of view, might look like.

3. Implementation Particulars

3.1 The Text File
The text file created by the implementor of a particular

help facility has certain restrictions and rules. Figure 2
illustrates what the text file should "look" like.

The name of the help file corresponds to the name by which
the help file is identified within the program. This name is
not seen by the user, only by the program. This name should
always be the first line of the text file.

Following the name of the help file comes the "name" of the
introduction - i.e., a name with which or by which the user can
identify the help package accessed. This name also appears on
a line by itself. Following the introduction name is the textual
description of the introduction itsel€E.

Following the introduction, the name of each menu selection
which will be made available to the user, along with the expla-
nation which will be provided if the user selects that option,
appears. Each name (including the introduction name) appears on
a separate line and each description or explanation is terminated
with a # terminator, also on a line of its own.

The current limits imposed on the names and descriptions in
the text file are:

- the names are limited to 15 character in length,

- the textual descriptions for each menu option and for the
introduction are limited to 24 lines of 80 characters each,
and

~ 65 such descriptions (including the introduction description)
can exist.

These limits are, of course, program constants that can be
changed, as necessary, to meet the requirements at hand.

3.2 The help f£ile package
Once the text file has been created, the creator can incor-

porate his or her help facility into the general help package by
calling a program called PROTOTYPE. The basic task of PROTOTYPE
is to create a binary file containing the information of the text

file.
When PROTOTYPE is called, the contents of a binary file called

F.4.6.4

Payroll/personel

Payroll system

This panel allows input of new or update of existing
personell records regarding payroll

#*

SSN

The employee's social security number, in the following
format: 111 22 3333

#

Last name

Employee's last name, up to 20 characters in length.

Upper and/or lowercase letters may be used.

#

First name

Employee's first name, up to 20 character's in length.

Upper and/or lower case letters may be used.

Example: Employee's name is Marie Elizabeth Ogden;
enter Marie as first name, even if employee goes
by a different name.

Figure 2. Partial contents of a typical text file
containing information to produce an on-line
help manual

F.4.6.5

INDEX.BIN are loaded into memory. This binary file is strictly a
set of names and associated indices (or read/write head positions).
Figure 3 1illustrates the contents of INDEX.BIN.

PROTOTYPE first reads the name of the help package from the
text file. This name is stored in the next available position in
an array of records which contains help panel names and pointers
to their arrays of menu selection options, described below. The
first position in the array contains a count of the total number
of help files available; this number must be updated each time a
new help facility is added to the system. The indices or pointers
associated with each name are actually read/write head positions
into INDEX.BIN itself where the set of menu selections are listed
in an array associated with that particular help package.

After the help package name, in the text file, the introduc-
tion and menu selection names, along with their descriptions, are
found. PROTOTYPE reads the name of the introduction or menu selec-
tion option and stores the name in the next available position in
an array of menu selection names for that particular help facility.
Once again, the first element of each of these arrays contains a
count of the number of menu selection options (including the intro-
duction) available through the package. (The actual position of
the introduction name is always the second array position since
it is always the first description to follow the help package name
in the text file.) PROTOTYPE then reads the textual description
associated with the last name read and when the terminator (#) is
encountered, it performs a DIRECT_IO write of the description into
a file called DIRECT.BIN. The read/write head position of the
write is stored in INDEX.BIN along with the menu selection/intro-
duction name with which it is associated.

When EOF is encountered in the text file, and no violations
have occurred, PROTOTYPE performs a DIRECT_IO write of the up-
dated version of INDEX.BIN. Any violation of syntax rules en-
countered in the text file during the above process causes an
abort, with no updating of the INDEX.BIN binary file.

The second direct_io or binary file is the DIRECT.BIN men-
tioned above. It simply contains the textual descriptions, in
binary form, which the help package will use.

Figure 4 illustrates the relationship between INDEX.BIN

and DIRECT.BIN.

4. Discussion
When the user request on-line help he or she first gets a

general menu where one of three general options can be selected.
These are:
l1- a set of generalized commands/keys which pertain to all
help packages - e.g., how to save his/her work, how to exit
to the system without saving the work, etc.
2- The introductory section to the help facility which contains
a general description of the help package itself and of the
program/package with which it is associated.
3- A listing of the menu selection options available to the user.

F.4.6.6

I# of help

facilities

index of
option list

index of
option list

help pkg
name

help pkg
name

index of

option list

help pkg
name

up to 501 such records

of | index into | index into
options | DIRECT.BIN | DIRECT.BIN
| |
| name of | name of
| option | option

} |

index into
DIRECT.BIN

name of

|
i
|
|
| option

up to 64 records/array
up to 501 such arrays (1 per

facility)

Figure 3. The basic structure of the direct_io

file INDEX.BIN

F.4.6.7

help

INDEX.BIN
\

AN

1

3
I C

{ £
LA B

ARRAY OF HELP FACILITY NAMES/INDICES

Y S ——

2 13 , 4
XYZ | |

| |
N
ec_lxva_|ono

2 | 503 | 504

— — — —

IMBC | ORZ

ARRAYS OF OPTION INDICES INTO DIRECT.BIN

— e m—

DIRECT.BIN

— e e e — —— - — O —— — — — — o—— — ———— p— —— o— —

UP TO 65 SUCH 'RECORDS' PER HELP FACILITY

Figure Q. Relationship between INDEX.BIN and

DIRECT.BIN

F.4.6.8

Each screen produced by a user selection contains a general
set of directions for cursor movement, returning to previous screens,
exiting, etc.

When the user selects option 1 above, PROTOTYPE is by-passed
and the ON-LINE-HELP package calls a panel generation package to
produce the "general help" screen, since the contents of this screen
are the same regardless of where it was called from.

Options 2 and 3, on the other hand, use the information created
by PROTOTYPE discussed above. When either of these is selected,
INDEX.BIN is opened and the name of the help package associated with
the program the user is in is searched for. When located, the
pointers into DIRECT.BIN are made available through the array of
pointers associated with that name. If option 2 was selected, the
introduction section pointer (which, as mentioned earlier, is
always the second record of the particular array) is used as the
read/write head position into DIRECT.BIN where the textual des--
cription can be found.

If option 3 was selected by the user, a listing of menu options
available is produced on the screen. This listing is available di-
rectly from INDEX.BIN since the names of the menu options (along with
their indices into DIRECT.BIN) are stored therein. Since the menu
selection items are listed in the order in which they appear in the
INDEX.BIN array for that package, keeping track of the cursor move-
ment, through simple addition and subtraction, also keeps track of
the index into the array DIRECT.BIN for the element pointed to by
the cursor. Thus, when the user does select a menu option, the
index into DIRECT.BIN is directly available and the requested in-
formation can be displayed.

Figures 5 and 6 illustrate actual screens which the
user might encounter; these are self-descriptive.

When the user exits the help mode, he or she is returned to
the point from which the help call was made. This is made possible
by saving the user's last used 'screen' in a buffer whose contents
are re-displayed when the help facility is exited,

5. Summary and conclusion

As can be deduced from the above discussions, the idea behind
the help facility is relatively simple. It is made unique by the
fact that it is written in Ada and uses aspects of the language which
- make information retrieval rapid and simple. Specifically, the
DIRECT_IO facility allows for random access into the help files. It
is unnecessary to discuss the advantages of random access over sequen-
tial access.

The mere fact that the program is written in Ada implies a saving
in terms of lines of code. This introduces the possiblity of even-
tually adapting the program to run at the micro-computer level, a
major consideration in this day and age.

Additionally, since the program uses only standard Ada generics,
it is portable to other systems. This is another aspect which must
always be taken into consideration in writting any software packaye
in the modern day world of computer programming.

F.4.6.9

COMMANDS ON PANEL

PANEL PREFACE => BRIEF INTRO TO CURRENT
PANEL

DATA DICTIONARY

| RETURN TO ACTIVE COMMAND MENU

I USE ~U TO MOVE UP, “D TO MOVE DOWN, |
| RETURN TO SELECT OPTION I

PANEL COMMAND DEFINITION

SAVE => SAVES ALL INPUT TO DATABASE
EXIT
LOAD
ERASE
HELP

| USE ~“U TO MOVE UP, “D TO MOVE DOWN, RETURN TO
| SELECT OPTION
|

Figure 5.

F.4.6.10

PANEL PREFACE

| USE RETURN TO ACCESS COMMAND MENU !
| : i

THIS PANEL ALLOWS FOR INPUT OF EMPLOYEE
PAYROLL RELATED INFORMATION. INFORMATION
CURRENTLY HELD ON A PARTICULAR EMPLOYEE
MAY BE ALTERED OR UPDATED VIA THIS PANEL.

Figure 6.

*Graduate students at The University of Houston--Clear Lake, Houston, Texas

F.4.6.11

SESSION F.5

Panel Chair:

Panel Members:

REUSABILITY PANEL

Delores S. Moorehead
Intermetrics
Houston, Texas

Ron McCain A
IBM Federal Systems Division
Houston, Texas

Ed Berard
EVB Software Engineering, Inc
Rockville, Maryland

Daniel McNichol
McDonnell-Douglas Astronautics Co.
St. Louis, Missouri

Rick Blumberg
Planning Research Corp.
McLean, Virginia

Norm Nise

California State Polytechnic University
and

Rockwell International

Downey, California

Elizabeth wald
Naval Research Laboratory/STARS

FoS.l

SESSION F.6

Panel Chair:

Panel Members:

DISTRIBUTED Ada PANEL

Roger Racine
The Charles Stark Draper Laboratory
Cambridge, Massachusetts

Mike Kamrad
Honeywell Systems and Research Center
Minneapolis, Minnesota

Pat Rogers (Charles W. McKay)
University of Houston_Clear Lake
Houston, Texas

Trevor Mudge

Department of Electrical Engineering
University of Michigan

Ann Arbor, Michigan

F.6.1

